|
Description:
|
|
When it comes to aircraft engines, rocket motors and nuclear power plants, the "heat" is constantly on to make the parts inside stronger, more reliable and more durable. In fact, when an airplane takes off, the materials in the hottest part of the engine reach about 90 percent of their melting temperature. So, there's always a desire to find a material that can operate at a higher temperature. With support from NSF, materials scientist Tresa Pollock and a team at the University of California, Santa Barbara, are partnering with General Electric and others to develop new multilayered materials designed for high performance in extreme environments. Pollock's team is pioneering the use of new modeling tools to speed up the development process and using advanced computer algorithms and big data analysis to hone their designs before testing them. |