Search

Home > Data Skeptic > [MINI] Activation Functions
Podcast: Data Skeptic
Episode:

[MINI] Activation Functions

Category: Religion & Spirituality
Duration: 00:14:11
Publish Date: 2017-06-16 10:00:00
Description:

In a neural network, the output value of a neuron is almost always transformed in some way using a function. A trivial choice would be a linear transformation which can only scale the data. However, other transformations, like a step function allow for non-linear properties to be introduced.

Activation functions can also help to standardize your data between layers. Some functions such as the sigmoid have the effect of "focusing" the area of interest on data. Extreme values are placed close together, while values near it's point of inflection change more quickly with respect to small changes in the input. Similarly, these functions can take any real number and map all of them to a finite range such as [0, 1] which can have many advantages for downstream calculation.

In this episode, we overview the concept and discuss a few reasons why you might select one function verse another.

Total Play: 0

Users also like

300+ Episodes
Good Law | B .. 80+     10+
400+ Episodes
The Knowledg .. 200+     10+
1K+ Episodes
Entrepreneur .. 600+     50+