Markus erzählt, wie er anfangs begeistert war – besonders mit dem Sprung von ChatGPT 3 zu [ChatGPT 4](https://openai.com/gpt-4). Für einen Moment schien es, als müsste bald niemand mehr selbst coden. Doch dann kam die Ernüchterung. Neue [agentic Modelle](https://www.talkdesk.com/de-de/blog/agentic-ai/) und Tools wie [Gemini 2.5](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/), [Claude 4](https://www.anthropic.com/news/claude-4) oder [DeepSeek R1](https://deepseek-r1.com/de/) machen Hoffnung – aber die Realität bleibt durchwachsen.
Die zentrale Frage ist: Ersetzt KI den ganzen Job – oder „nur“ das Coden? Wir sind uns einig: Entwickler:innen machen weit mehr als nur Code zu schreiben. Kommunikation, Konzeption, QA-Abstimmung – all das bleibt. Dass KI etwa 20 % der Arbeit übernehmen kann, klingt für Markus realistisch. Beim schnellen Prototyping hilft KI bereits enorm.
Aktuell arbeitet Markus wieder mit [GitHub Copilot](https://github.com/features/copilot), nachdem er [Cursor](https://www.cursor.so/) eine Weile ausprobiert hatte. Autovervollständigung ist für ihn mittlerweile Alltag. Aber: Macht das wirklich produktiver? Ob KI-Nutzung ein echter Wettbewerbsvorteil ist, bleibt unklar.
Spannend wird es bei der Frage: Was passiert, wenn KI Junior-Entwickler:innen ersetzt? Denn wo keine Juniors nachrücken, fehlen später auch Seniors. KI könnte also nicht nur Arbeitskraft, sondern auch Ausbildungspfade gefährden.
Ein sinnvolles Einsatzgebiet sieht Markus bei Aufgaben, die sonst eher lästig sind – etwa Refactorings oder Library-Upgrades. Doch genau da hapert’s noch. Seine Erfahrungen bei der Migration von [Nuxt 2 auf 3](https://nuxt.com/docs/migration/overview) waren eher ernüchternd. Auch bei komplexen Kombinationen – etwa [React 19](https://react.dev/blog/2024/12/05/react-19) mit [Next.js 15](https://nextjs.org/blog/next-15) oder [Remix](https://remix.run/) – liefern KI-Tools oft Mischmasch aus alten und neuen Patterns.
Unterschiede gibt’s auch zwischen den Frameworks: [React](https://react.dev/) wird gut unterstützt, [Vue](https://vuejs.org/) weniger, bei [Svelte](https://svelte.dev/) wird’s noch dünner. Der Grund: KI kann nur gut, was sie oft genug gesehen hat.
Markus‘ Fazit ist realistisch: Für schnelle MVPs ist KI ein gutes Tool. Für langfristige Architektur oder Legacy-Code eher nicht. Zwischen Hype und Ernüchterung bleibt KI ein mächtiges Werkzeug – aber nur, wenn man es gezielt und reflektiert einsetzt.