Search

Home > Epigenetics Podcast > Hydroxymethylation Landscape in Immunecells (Marcela Sjöberg)
Podcast: Epigenetics Podcast
Episode:

Hydroxymethylation Landscape in Immunecells (Marcela Sjöberg)

Category: Science & Medicine
Duration: 00:38:14
Publish Date: 2022-09-08 07:01:00
Description:

In this episode of the Epigenetics Podcast, we caught up with Marcela Sjöberg from the University of Chile to talk about her work on the hydroxymethylation landscape in immune cells.

At the beginning of her career Marcela Sjöberg worked on Polycomb and how modifications placed by this complex modulate the binding of RNA Pol II. Later, her focus shifted to hydroxymethylated cytosine and how it is involved in the inheritance of Metastable Epialleles in mouse. More recently, the laboratory is interested in transcription factor binding motifs and how hydroxymethylation of those binding motifs modulates the binding and activity of the respective transcription factors.

 

References

  • Sabbattini, P., Sjoberg, M., Nikic, S., Frangini, A., Holmqvist, P.-H., Kunowska, N., Carroll, T., Brookes, E., Arthur, S. J., Pombo, A., & Dillon, N. (2014). An H3K9/S10 methyl-phospho switch modulates Polycomb and Pol II binding at repressed genes during differentiation. Molecular Biology of the Cell, 25(6), 904–915. https://doi.org/10.1091/mbc.e13-10-0628

  • Kazachenka, A., Bertozzi, T. M., Sjoberg-Herrera, M. K., Walker, N., Gardner, J., Gunning, R., Pahita, E., Adams, S., Adams, D., & Ferguson-Smith, A. C. (2018). Identification, Characterization, and Heritability of Murine Metastable Epialleles: Implications for Non-genetic Inheritance. Cell, 175(5), 1259-1271.e13. https://doi.org/10.1016/j.cell.2018.09.043

  • Westoby, J., Herrera, M.S., Ferguson-Smith, A.C. et al. Simulation-based benchmarking of isoform quantification in single-cell RNA-seq. Genome Biol 19, 191 (2018). https://doi.org/10.1186/s13059-018-1571-5

  • Viner, C., Johnson, J., Walker, N., Shi, H., Sjöberg, M., Adams, D. J., Ferguson-Smith, A. C., Bailey, T. L., & Hoffman, M. M. (2016). Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet [Preprint]. Bioinformatics. https://doi.org/10.1101/043794

     

Related Episodes

 

Contact

Total Play: 0